New Transport Technology

how does it benefit the transport industry?

By

Fritz Hellberg

Hellberg Transport Management

Drivers of technological development

- 1. The ever-increasing oil price
- 2. The looming spectre of diminishing fossil fuel reserves
- 3. The need to protect our environment
- 4. The need to drive down costs generally to become globally competitive
- 5. Stricter law enforcement
- 6. The need to achieve better vehicle utilization

Areas to be discussed

- Engines and drivelines
- Fuel and lubrication
- Electronics
- Braking systems and retarders
- Suspensions
- Tyres
- Chassis and body materials
- Vehicle tracking and performance prediction

	The (1000)	Na (2000)	D:tt 0/
	Then (1968)	Now (2009)	Diff %
Engine configuration/capacity	V8/14.2 litre	V8/15.6 litre	10
Power	257 kW(350hp)	456 kW (620 hp)	77
@ engine revs	2300	1900	-17
Torque	1250 Nm	3000 Nm	180
@ engine revs	1000-1400	1000-1400	0
Engine mass	1155	1478	28
Injection pressure	203 bar	1500 bar	639
Fuel consumption	49 l/100km	36.6 l/100km	-25
Average speed	54.9 km/h	75.9 km/h	38
Noise	76.5 db	62.1 db	-19
Payload Productivity	23.5	47.7	103

Sulphur content specifications

Specification	Sulphur ppm (max)		
	Standard	Low	
South Africa	500	50	
Euro 2	2000		
Euro 3	350		
Euro 4	50	10	
New Zealand	50		

50

Australia

European emission legislation

Areas to be discussed

- Engines and drivelines
- Fuel and lubrication
- Electronics
- Braking systems and retarders
- Suspensions
- Tyres
- Chassis and body materials
- Vehicle tracking and performance prediction

Potential difference

Configuration	Droductivity	Diff%	from Pooo
Configuration	Productivity	DIII %	from Base
Standard vehicle	27.6		
low RR tyres	30.0	8.7	8.7
retarder	32.5	8.3	17.8
better driveline	33.2	2.2	20.3
lower tare mass	35.0	5.4	26.8
 low wind resistance 	35.3	0.9	27.9

Productivity = Payload X Ave speed / Ave fuel consumption

The diesel engine still has tremendous potential